
r%0l @&AhSB NTATION PAGE Form Approved

OMB No 0704-0188

II1 II uII 111 li III ill U' ,d.e .. Aa+n+'-, "Cadd,~a!' n' .. 'n. A!+,o O+ e to. d. o'.nt 'a+
DO'Ce - V~aan"q e"'' and Budge'. PaoerOCK Reaunion Poiect 0704-0'88) AaSr,,nr -,C 2rSC3

I ii iRTDATE 3. REPORT TYPE AND DATES COVERED
Final 1 JAN 88 - 31 DEC 91

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

"NEW DIRECTIONS IN NETWORK FLOWS" 61102F

2304/B1

6. AUTHOR(S)
Dr. James B. Orlin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
MIT REPORT NUMBER

Sloan School of Management

50 Memorial Drive, E53-357

Cambridge MA 02139

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING. MONITORING

AFOSR/NM
AGENCY REPORT NUMBER

Bldg 410
Bolling AFB DC 20332-6448 D T ICF Co k-SF-C

11. SUPPLEMENTARY NOTES -A EhAL -I -
MAY 1 8 1992

12a. DISTRIBUTION AVAILABILITY STATEMENT 11-P 12b. DISTRIBUTION CODE

Approved for public release;
Distribution unlimited UL

13. ABSTRACT (Maximum 200 words)

A new, fast algorithm has been developed for the solution of problems
using Lagrangian relaxation. This algorithm appears to improve
running times by a factor of n-squared, where n is the number of
variables.

14. SUBJECT TERMS 15. NUMBER OF PAGES

6

16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

- - •

A Final Report for contract AFOSR-88-0088

20 March 1992

by James B. Orlin

MIT Sloan School of Management

This past year I have carried out research on several projects under the contract AFOSR-

88-0088. These may be summarized as follows:

1. Developing faster algorithm for solving lagrangian relaxation problems.

2. Co-authoring a graduate text in the area of network flows.

3. Solving the shortest path problem from each node of a set of origin nodes to

each node in a set of destination nodes.
4. Diagnosing infeasibilities in network flow problems.

5. Data compression for shortest path problems in Geographical Informations

Systems.

6. Improved algorithms for the assignment problem.

These topics encompass a range of topics in which I am interested within the area of

network optimization. I believe that several of these topics will be considered to be

important contributions to the field of network optimization, and some of these may

have important ramifications in practice. I will summarize each of the contributions

below.

N Faster Algorithms for Solving the Lagrangian Dual. (Joint with Dimitris Bertsimas.) This

____ has led to the following paper:

__ "A Technique for Speeding up the Solution of the Lagrangian Dual" with Dimitris
___ Bertsimas. Operations Research Center working paper OR 248-91. April 1991.

Accepted for publication by Mathematical Programming.4

Moreover, the paper will presented at the upcoming IPCO conference. []

Literally hundreds of papers have been written in the past 20 years in which

problems have been solved using lagrangian relaxation. Mathematically, the problem can

be formulated as follows. The problem is to find the optimal solution to P, where S is des

some polyhedral set. (For example, S can be the feasible solutions for some network flow

95.N

9I 2

problem. The lagrangian subproblem is P(), and the lagrangian dual is to maximize z(X)

fork E Rd.

z*= min cx

s.t. Ax = b P
xe S

min cx -X(Ax- b) P(X)

S.t. XE S

Remark. z(X) < z* for all X.

Lagrangian Dual: maximize (z(X) : X E R d).

Lagrangian relaxations are a major application area for networks and other combinatorial

problem since the problem P(,) is so often a network flow problem. Because the solution

to lagrangian duals relies on solving the lagrangian subproblem a large number of times,

the solution technique relies on the fact that network flow problems can be solved 100's of
times faster than other line,- - programs.

The contribution of my joint paper with Dimitris Bertsimas to solving the
lagrangian dual is the following: we have the best algorithms in terms of (worst case)

performance guarantees. Moreover, our improvement over the best other algorithms is

substantive. In some cases we have improved the running time by a factor n2 or better.
(And even though our paper talks about fast matrix multiplication, one does not need fast

matrix multiplication to achieve these enormous speedups.) Our approach relies on

solving the lagrangian dual problem using a linear programming method such as the

ellipsoid algorithm.

We have not yet tested out our approach. We are optimistic about the performance

in practice of our approach if we use as a subroutine an algorithm developed by Leonid

Levin about 8 years ago. Levin's algorithm has the same performance guarantees as the

ellipsoid algorithm and Vaidya's algorithm, but it seems to be much better suited for

solving problems in practice. To our knowledge, no one has ever tested Levin's
algorithms to see how well it does in practice. If our ideas work well, then we might solve

many network optimization problems not previously solved in the literature.

Network Flow Book. (Joint with Ravi Ahuja and Tom Magnanti)

This book (approximately 800 pages) is intended both for classes in network
optimization as well as by researchers. The book will be completed this fall, and it will be

published by Prentice Hall next fall. It has a number of new research results within it on

each of the following topics:

1. The shortest path problem

2. The maximum flow problem
3. The minimum cost flow problem

4. The multicommodity flow problem

5. The generalized flow problem

6. The convex cost flow problem

In addition, it brings together topics covered in our bibliography of approximately 500
papers, and presents a large number of disparate research results in a unified framework.

One of the key features of this book is a compilation of approximately 150
applications that have been culled from the Operations Research literature. These
applications (each of which is described in sufficient detail) suggest the broad range of

applicability of network flows. Moreover, the compilation of this large collection of

applications may in and of itself lead O.R. practitioners to use network optimization

models even more frequently in the future.

Another key feature of this book is the use of exercises to present additional

technical material. We have included approximately 600 exercises, and so the book
material goes significantly beyond that covered in the text of the chapters.

We also feel that we have made the last 10 years of research in networks accessible

to a very broad audience, in addition to our covering the classical results.

The O-D shortest path problem (joint with Murali Kodialam).
This topic has appeared in the thesis of Murali Kodialam, and will be written as a

technical paper within the next two months.

One of the most significant problems in network optimization is the problem of
identifying the shortest (or least cost) path from one node to another node in a network.

For example, in a communication network, one wants to find the cheapest way for one
person to communicate with another. In a road network, one wants to find a shortest

route from point A to point B. In addition, the shortest path problem has a wide range of

other applications in . transportation systems, communication systems, project

management, and other assorted contexts. Here we consider a generalization of the

shortest path problem in which there is a set 0 of origin nodes, a set D of destination
nodes, and the objective is to find the shortest path from each node in 0 to each node in

D. We refer to this problem as the O-D shortest path problem.

Special cases of this problem include the following well studied problems: (1) the
problem of finding the shortest path from a single origin s to a single destination t, (2) the
problem of finding the shortest path from a single origin s to all other nodes, and (3) the
problem of finding the shortest paths between all pairs of nodes in the network. In

addition to generalizing these three famous shortest path problems, the O-D shortest path

problem has other applications of importance.

The O-D shortest path problem arises whenever one wants to solve a restricted
problem on a road network. For example, consider a traveling salesman problem in
which a salesman needs to visit 100 customers. Determining the travel distances between

each pair of customers is an O-D shortest path problem. As another example, in the
Hitchcock transportation problem, one wants to deliver goods from a set S of warehouses

to a set T of retailers, so as to minimize the total transportation cost. The cost of shipping

from warehouse i to retailer j can be estimated using the minimum distance from i to j in
a road network. To calculate the shortest distances one needs to solve the O-D shortest

path problem between all pairs of points in S and all pairs of points to T.

This past year, we have considered a modification of the following algorithm for

solving the O-D shortest path problem. For each origin node grow a shortest path tree

starting from s using Dijkstra's algorithm (with appropriate data structures to enhance

performance). Also, for each destination node t grow a shortest path tree terminating at t
using (reverse) Dijkstra's algorithm. When all of the trees have intersected, then "patch"

the solutions obtaining all of the O-D shortest paths.

We conjecture that this algorithm will be effective under a wide range of
circumstances. For the case of random graphs, where each arc has an equal chancr of

being in the graph, and where arc lengths are uniformly or exponentially distrif-uted, we

can prove that the algorithm is remarkably good. For the case that the number of origin
nodes and the number of destination nodes is less than N/n-og n where n is the number

of nodes, then the expected running time of the algorithm is linear in the data. In other

words, solving the problem takes no more time than reading the datd. And we have

solved nearly n shortest path problems in this time!

In practice, graphs are not random (in the sense usually considered in the

literature), and the algorithm will not be as effective; however, it is still likely that the

algorithm will be quite good. This awaits our computational testing of the algorithm.

Diagnosing Infeasibility in Network Flow Problems. (Joint with Jianxiu Hao). This paper

employs some of the techniques of the following paper to solve a problem of concern in
practical implementations of network flow problems:

"A faster algorithm for Finding a Minimum Cut in a Graph" with Jianxiu Hao. Sloan

School Working Paper 3372-92. December, 1992.

In the case that there is no feasible flow for a minimum cost network flow model,

the modeler may want to diagnose the source of the infeasibility and correct it if possible.
A "proof of infeasibility" (or violating set) is a set S of nodes whose net supply exceeds the

net capacity of arcs leaving S. In general, there may be a large number of different
violating sets. Harvey Greenberg posed the problem of developing tools for a modeler so

that the modeler can find desirable violating sets, i.e., violating sets that really help the

user to diagnose the problem and correct. We have determined procedures for finding

violating sets with certain desirable properties including the following: (1) the set with the

most infeasibility, (2) the set with the most infeasibility per node, and (3) violating sets S

that are minimal, i.e., no proper subset of S is violating.

The first result is actually a well-known application of the max flow algorithm.

The second result is an application of some deep results of Gallo, Grigoriadis and Tarjan.

The third result is our primary contribution. We can show that one can find minimal

violating sets by solving n different max flow problems (where n is the number of nodes),

and one can take advantage of the special structure of these problems to solve all of the n

max flow problems in the time the time that it normally takes to solve just one max flow

problem.

We will write these results as a technical paper during this upcoming summer.

Data Compression for Shortest Path problems. (Joint with Diane Misra.)

We propose to consider shortest path problems in a road network. One of the key

questions that we will deal with is the following: Suppose that one has solved the

shortest path problem from each node in a subset S. To store this information in the

standard way requires the storage of a spanning tree for each node in S. Thus, for a

network with n nodes, the amount of storage is O(n IS I). This amount of storage is

prohibitively excessive for many applications. One alternative is to store only differences
between spanning trees. Thus if we want to store spanning trees TI, T2, T3, etc., then we
need only store the arcs that are in Tj but not in Tj_1 for each j = 2, 3, 4 etc. The primary

difficulty with this storage technique is that the construction of each tree may take too

long.

We have developed an approach that is comparably efficient to the above scheme

in its data compression. We have found that the average number of arcs stored per tree is

typically around n rather than n, and this leads to about a factor 100 savings in space for

all pairs shortest path problems on networks with 10,000 nodes. In addition, our approach
has the advantage of recovering any decompressing any spanning tree in 0(n) time and

decompressing any shortest path of k arcs between an origin and destination node in

O(n log n) steps.

The Assignment Problem

We have developed a very fast approach for solving the assignment problem. Our

basic approach is to use the successive shortest path algorithm with a variety of heuristics

to improve the algorithm, including the following, (1) stopping each augmenting path

phase earlier than is normally done, (2) using a technique to improve the performance of

binary heaps, and (3) using bidirectional shortest path techniques to improve the

performance of the augmenting path phases.

We anticipate that our approach will prove to be the fastest algorithm for the

assignment problem. In addition, we have done extensive analysis which suggests that

the running time for the algorithm on random assignment problems with n nodes and m

arcs is O(n log 2n + m). Surprisingly, this running time is not determined by curve fitting,

but by an interesting mix of theory and computational testing.

